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Introduction 
It is becoming ever more important to track and manage the biodiversity that lives on Earth. More and more 
animals and plants are becoming extinct everyday which can create a major impact on other parts of the 
ecosystem. The group that our team is involved with, Soundscapes2Landscapes, is a science-based project 
looking to further advance biodiversity monitoring in order to save the lives of plant and animal species. 
Biodiversity is the study that ”refers to the variety of living organisms on Earth, how they relate to each other, 
their ecological function, and genetic diversity. All aspects of biodiversity are intimately linked to the functioning 
of ecosystems, where species interact with their physical environment. Biodiversity plays a vital role in many 
ecosystem functions, such as clean water, clean air, nutrient cycling, food production, and responses to 
disturbances, such as res.” [1] It is vitally important to conduct proper biodiversity monitoring, in order to 
understand the ever changing environments that humans share with plant and animal species. 
 
Our clients Colin Quinn and Patrick Burns are part of the Global Earth Observation Dynamics of Ecosystems 
Lab (GEODE). Colin Quinn is a PhD student and Patrick Burns is a Research Associate at Northern Arizona 
University. They work with Soundscapes2Landscapes to help achieve their biodiversity monitoring goals. Our 
clients use a specic type of monitoring called passive acoustic monitoring (PAM). This process allows more 
spatially extensive and continuous metrics for biodiversity. In Sonoma County, PAM has the ability to provide 
land managers and users with a better idea of animal species affected by development and conservation 
efforts. Our clients have assigned our team with the task of automatic sound identication from a soundscape, 
as currently sound identication is conducted in a manual time consuming way. 

Problem 
To understand the problems of the current implementation, the workow process will be discussed. First, 
soundscape recording data is collected from low cost audio recording devices that are placed in different 
landscapes across Sonoma County, California. Once placed, these devices record one minute of every ten 
minutes for three to ve days at each site. This has so far resulted in a total of over 500,000 minutes of 
gathered audio data.  The soundscape recording data then moves onto sound analysis where biodiversity can 
be identied along with the specic layers of biophony, geophony, and anthrophony. Once the identication 
and analysis are done, satellite imagery from the International Space Station is used to create visual 
representations of the surveyed sites. Finally, the satellite data and sound data are put together to create a 
species distribution model, which can be used to track locations of bird species and potential environmental 
changes in their ecosystems. 
 
The part of the process we are involved with is the soundscape manual analysis. Currently researchers would 
manually listen to audio les and draw boxes around various sounds. For a one minute clip, a researcher must 
listen to the clip, determine what the sounds are, draw boxes, and label each box with the corresponding audio 
component that is occuring. With noisy les, a researcher may spend over a minute going through a single le. 
This tool is useful but takes too long for scientists to effectively research the biodiversity in Sonoma County, 
California. Because of the frequent recording of audio, the researchers have resulted in terabytes of sound 
data for each individual site. Additionally, our clients would like for volunteers, or citizen scientists, to be able to 
analyze their own les. For example if a volunteer is working out in the field and records some audio, there is 
no current way for this volunteer to analyze their file as most of the features of the current identification tool are 
closed to volunteers.  
 



Overall, the problems include:  
 

● The manual identication process is very time consuming. Terabytes of audio is collected from each 
site, and requires people to listen to the audio and manually draw boxes around the sound components 
being searched for.  

● Current interface is not easily accessible to volunteers. Soundscapes2Landscapes wants this tool to be 
able to be used by anyone, and the current interface is not very easy to navigate for non-tech 
volunteers. 

Solution 
Our solution to these problems will be an application called the Soundscape Noise Analysis Workbench. This 
solution involves a user-friendly user interface that hosts a machine learning model. The goal of this application 
will be to allow any user to upload their audio les for analysis. 
 
Overall, our solution will consist of:  
 

● User-friendly web application.  
● An ability to automatically classify different audio components in the inputted le using the following 

machine learning models: 
○ Support Vector Machine 
○ Neural Network 

● Calculated acoustic indices (data statistics used by sound researchers) for each uploaded sound file. 
● Visualizations of the analyzed audio components.  
● Table of audio components and acoustic indice values. 
● A way to export each models’ classification and the calculated acoustic indice values. 
● A standalone version of all the features of the web application for ofine use in the eld. 

 
The solution will ingest audio les. Researchers from Soundscapes2Landscapes will use audio les that they 
collect with the low-cost audio devices being used around Sonoma County, California. We will be using a 
machine learning algorithm to automatically classify different types of sounds in these recordings. Our machine 
learning model plans to accomplish the task of identification in a fraction of the time than current 
implementations, classifying an audio le in under a few seconds. The machine learning model requires 
training to accurately classify audio components. We must train the model on previously classied audio data. 
This previously classied audio data consists of many audio les that have been labelled with each category of 
sound that we are looking for. The sound categories will include birds, cars, rain, wind, and others. Collecting 
data to train the machine learning model will come from multiple sources, including open source data and data 
from Soundscapes2Landscape’s audio recorders. The results of this classication will be visualized in a variety 
of ways. The visualizations will include a labeled spectrogram, showing the classied components in the 
inputted audio, as well as a pie chart of the proportions of each sound category. These categories include 
geophony, biophony, anthrophony, and a no sound present category. Additionally a table of all the information 
collected from the analyzed file will be displayed. The solution will also be created as an application for ofine 
use in the eld. This application will provide users the ability to classify their audio without an internet 
connection. 



Requirements 
From developing our planned solution to the problem our clients presented us with, we have created specific 
requirements that our envisioned solution needs in order to properly create a working final product. Our team 
has determined that this project contains key domain level requirements: users will be able to upload audio 
les, then analyze the uploaded files, then see the results of the analysis visualized in a timely manner, and 
then export all results. 
 
From these key domain level user requirements, key functional requirements for the system were created. 
These requirements detail the specific features the product will provide our users when accessing the 
envisioned application. The application ingest audio les, then using machine learning will classify the sound 
components in the uploaded file, then calculate acoustic indices, then display the results in multiple ways, then 
export these results, and finally an offline version of the application for fieldwork is needed. In addition to the 
specific functional requirements our product will need to solve our clients goal, specific non-functional 
performance requirements were needed for our product to succeed. The performance requirements include: 
uploading a one minute file should take less than 5 minutes, and should only take at most three seconds to 
complete a full analysis. As well as specific performance requirements our team realized one important 
environmental constraint featured in our planned system. Our clients work currently only consists of data from 
Sonoma County, California. Since the data only consists of Sonoma County data, it is not easy to guarantee a 
high accuracy from our machine learning model when data from other parts of the world is to be used with our 
application. 
 
After discussing with our clients the problem they are facing, working to find a envisioned solution to solve their 
problem, and creating the key specific requirements; a specific design must be created in order to finalize how 
the final product will be built. The purpose of this document is to outline the specific design of how the software 
will be built by the team. This document will explain the overall architecture of the final product, how each 
module of our solution works and how each module works with each other. Finally, we will explain how our 
team plans on implementing each part included in this document.  
 

Implementation Overview 

 
Through our requirements acquisition, our clients helped to reveal the major problems which we are looking to 
solve. The main problems which arose through our acquisition consist of the following:  
 

1. The clients currently use manual identification when analyzing their large storage of audio files, which 
has proven to be very time consuming. 

2. The current program, Arbimon, is not easily accessible to the client’s volunteers. 
3. The current analysis does not run efficiently on an HPC. 

 
 
 
 
The solution we have envisioned for our clients is an application which will be named “Soundscape Noise 
Analysis Workbench” (S.N.A.W). The S.N.A.W will consist of the following attributes:  



Figure 1: Diagram of the Soundscape Noise  
Analysis Workbench System Components 

 
● It will be a user-friendly web application and an offline 

application. 
● It will utilize a machine learning algorithm which can 

automatically classify specific audio components which are 
being searched for. 

● The online web application will return clear visualizations  
of the analyzed audio file. 

 
Our solution will require that audio files are input in the WAV 
format, as the client’s audio recording devices collect and store 
data in WAV format. Once the files are uploaded, the application 
will then use a machine learning algorithm to start the identifying 
process. The usage of a machine learning algorithm to identify 
sounds within an audio file solves problem (1) stated above. We 
plan to create a simplistic design for the web application to ensure 
that it presents a user friendly experience while maintaining full 
functionality while analyzing the audio files, creating a simple 
design solves problem (2) stated above. Lastly, the creation of an 
offline application will directly solve problem (3) listed above, as it 
will be able to use the same functionality as the web application 
without the visualizations. The offline application will be more in 
tune for analyzing bulk files on an HPC. 
 
The technologies we have chosen for the solution consist of the 
following: React, JavaScript, Flask API, and many Python 
libraries. Each of the technologies listed will contribute and work 
together to create our product. React will be used to create our 
web application, and allow us to create a user-friendly front-end. 
The Flask API will be used as the “glue” to connect our React 
front-end to our machine learning scripts. The Flask API will also 
be able to run the React front-end as a server which will receive 
API calls and present different pages through URL requests sent 
from the front-end. These technologies will be able to produce the 

tools we will need to finish the product according to how our clients expect it to be. To view more details on 
information for the specific Python and React libraries we have chosen to work with, please refer to the 
Technologies Appendix. 

Architectural Overview 
 
In the previous section, we discussed the implementation overview that our team has developed to produce 
our product. To understand the architecture of our system, we will discuss the high-level detail on how the 
Soundscape Noise Analysis Workbench will be built. Below are multiple diagrams of our system components 
[Figures 2,3,4]. 



 
Figure 2: Diagram Overviewing the S.N.A.W Server Architecture 
 
An outline of our Soundscape Noise Analysis Workbench server architecture is shown in Figure 2. A Flask 
server runs the S.N.A.W. module. The server takes in inputs of either a directory of audio files, or a single 
audio file. The server connects to the libraries needed by each component of S.N.A.W. The server sends data 
and receives data from our analysis module. Finally the server sends an exported file to the user. 

 
Figure 3: Diagram of the S.N.A.W.  Architecture’s Modules 
 
An outline of the Soundscape Noise Analysis architecture modules is shown in Figure 3. Taking in the inputted 
directory of audio files or a single audio file, the upload data module will handle the data and send the server 
locations of each file to the analysis module. The Analysis module uses the uploaded files and runs the Neural 
Network, Support Vector Machine, Acoustic Indices, and Spectrogram Modules. These modules return the 



Data Structure as described in “Data Structure Description” to the Export Module and Visualization Module. 
The Export Module sends an export file to the user. 

 
Figure 4: Diagram of the Standalone Offline S.N.A.W. Architecture 
 
A diagram of the Standalone Offline S.N.A.W architecture is shown in Figure 4. The component modules of the 
system work very similarly to the web application with a few differences. Firstly the workbench does not sit in a 
server but is instead an standalone executable file. The libraries needed by each component are included in 
the file itself instead of being called by the server. Each module found in the analysis module is included in the 
offline file itself instead of being called by the server. Additionally the Spectrogram Module and Visualization 
Module are not included in the standalone application as the only output to the user is the exported file.  
 
Our product, the Soundscape Noise Analysis Workbench, will be developed in Python and Javascript. Python 
will be utilized for the back-end of our system with the microframework Flask. Our front-end will be developed 
using React, a Javascript library. Our offline version of our application will run as a single python script. Below 
we will overview the key responsibilities and features of each component of our system, which include: 

Upload Data Module 
The Upload Data Module will be utilized to ingest audio files that will be analysed. The application ingests files 
in WAV format and stores them for further analysis. The user will be able to choose to analyze a single file or 
multiple files. This will be done by dragging and dropping the file(s) onto the web application, or by choosing 
the files from a file chooser. 

Analysis Module 
The Analysis Module is used to take the ingested audio files and run multiple types of classifications on them. 
This includes running the audio files through a Neural Network to identify sound components, using a SVM to 
identify sound components, and run Acoustic Indices calculations. 



Export Module 
The Export Module will allow a user to export the analyzed results. The user will then be able to keep a log of 
the results on their local machine. The results will be in the CSV files. There will be a CSV file for the Neural 
Network classification, a CSV for the SVM classification, and a CSV for the Acoustic Indices calculations. 

Visualization Module 
The Visualization Module is used to visualize the results in a user-friendly manner. The user will be able to get 
an intuitive visual of what sound components were present in the file, where they were found, as well as how 
big of a proportion of the audio file was identifiable sound components.  

Standalone Offline Script Module 
The Standalone Offline Script Module is used to have a standalone version of the Soundscape Noise Analysis 
Workbench. This will be in the form of a script that can be run through a terminal. Using a standalone version 
of the application will be useful for anyone looking to analyze audio without a connection to the internet. The 
user will need to provide a path to the a directory of audio files to be analyzed.  
 
These modules make up all of the functionality that SNAW will provide. Now we will look into the 
communication mechanisms and information flows of our architecture. The web application connects the 
Upload Data Module, the Analysis Module, the Export Module, and the Visualization Module. The Upload 
Module will ingest the audio files and store them in a location that the Analysis Module will pull from. The 
Export Module will input the data from the Analysis Module and allow for the results to be downloaded. The 
Visualization Module also uses the Analysis Module’s output to create user-friendly visualizations for the 
end-user. The Standalone Offline Script Module is separated from all of the other modules. The control flow will 
be in a script that runs each classification offline. 
 
With the communication mechanisms and information flows discussed, we will discuss the influences from our 
architectural style embodied by our architecture. For our React App, we have modularized the application into 
many components. This allows for updating the code base in the future and debugging the application much 
easier. 

Module and Interface Descriptions 
In the previous section, we discussed the high-level details on how the Soundscape Noise Analysis 
Workbench will be built. To understand the lower-level details of our system’s architecture, we will go into detail 
for each individual module. 

Upload Data Module  
This module is used to ingest WAV files into the system. Files will be selected from a file chooser or can be 
dragged and dropped onto the web application. An error will be shown if the user attempts to upload a file that 
is not accepted by the web application. The ingested files will be uploaded to a server to then be utilized by the 
Analysis Module. The Upload Data Module sits at the very beginning of our products architecture, as files are 
needed to move forward with the execution of the product. Below is a UML diagram of the Upload Data Module 
[Figure 5]. 



 

 
Figure 5: UML diagram of the Upload Data Module 
 
Input = A WAV file or multiple WAV files (unless we choose to accept other popular file formats). 
Output = An array of files uploaded to the server with a confirmation message to the end-user. 

Analysis Module 
This module will be used to run Neural Network classifications and Acoustic index classifications on the 
uploaded audio file(s). Once the Upload Module has completed, the user will be able to press the “Analyze 
Audio” button which will run 3 seperate classes and their methods to analyze the audio. The SVMClassification 
and NeuralNetworkClassification classes will run our machine learning models on the uploaded audio file/s and 
return a JSON dictionary populated with the results from each of the classes. The AcousticIndices class will 
run many different methods to calculate the specific acoustic indices within the file, and then return a JSON 
dictionary populated with the result data. Upon completion of all three classes running successfully, the 
Analysis Module will then send a populated JSON dictionary to the Visualization Module to be processed and 
displayed on the front-end of the product. The results from the Analysis Module will also be sent forward to the 
Export Module. The Analysis Module is an important part for the overall product, as this is where the main 
portion of calculations on files is done for the product. Once completed, the product is then accessible through 
the Visualization and Export Modules. Below is a UML diagram of the Analysis Module [Figure 6]. 

 



 
Figure 6: UML diagram of the Analysis Module 
 
Input = Audio File(s). 
Output = JSON Dictionaries from each classification containing the results. 
 
The Analysis Module’s output references a data structure known as a JSON Dictionary, which will be one of 
our main data structures organizing our resulting data. JSON dictionaries utilize Key-Value pairs, in which a 
unique “Key” (string, integer, etc) is stored and will be attached to specific data or “Value” that we choose. We 
pass a single JSON object to the front end. This overall object contains a JSON object for each uploaded file. 
Associated with each uploaded file is a JSON object with the results of each of the four different back-end 
analysis functions. The UML Diagram below showcases the design that we have decided on for our JSON 
dictionary [Figure 7].  
 

 
Figure 7: Diagram of the JSON Structure 



Visualization Module 
This module is used to visualize the data needed by users in a user-friendly way. It accepts the results 
generated by classification Python programs and acoustic indices Python programs from the back end. The 
Visualization Module will generate a certain number of extension panels imported from material UI, depending 
on the number of files uploaded by users. We have ReceiveAndCalculate sub-module, which receives the 
dictionary that is passed by the Analysis Module running neural network and acoustic indices calculation. The 
dictionary contains three categories: anthrophony, biophony and geophony. The visualization module also 
have another GenerateGraph sub-module, which will calculate the number of these three categories 
respectively, and then generate the line chart and pie chart through the line chart and pie chart files imported 
from recharts. They all include the charts imported from the rechart package. This sub-module also takes the 
spectrogram from the results folder and displays it in cardmedia. A line chart is displayed as a scalable vector 
graph, and a pie chart is also a scalable vector graph. All the data in the table are from our calculation of 
classification dictionary and acoustic index dictionary. Here is the UML diagram of the visualization module 
[Figure 8]. 

 

 
Figure 8: UML diagram of the Visualization Module 

 
Input = Dictionary. 
Output = Spectrogram, Charts, Table of values of each of the acoustic index percentage. 

Export Module 
This module is used to export a CSV file that has been populated with result data from the backend. The 
Export Module will receive a JSON dictionary which is passed through by the Analysis Module which runs the 
Neural Network and Acoustic Index calculations. The Export Module will be run by the ExportResults class, 
which contains methods for the Neural Network Classification, SVM Classification, and Acoustic Indices 
calculations. Using the data received from the JSON dictionary, the selected CSV of the three options 



mentioned will be formatted properly. The NN_Results.csv will contain data regarding the specific sound 
events that were identified within the audio file, along with the respective timestamps at which the sound 
events occured. The SVM_Results.csv will contain similar data to the NN_Results.csv, except that the data will 
be obtained from running an SVM model instead of a Neural Network model. Lastly, the 
Acoustic_Indices_results.csv will contain data on the acoustic indices of the specific file analyzed, and will 
include each of the sub-categories in the acoustic indices and their respective values calculated. The Export 
Module is found at the end of our products architecture as its main objective is to allow the user to retrieve the 
results of the product after the Analysis Module has been completed. Below is a UML diagram of the Export 
Module [Figure 9]. 
 

 
Figure 9: UML diagram of the Export Module 
 
Input = JSON Dictionaries from the Neural Network Classification, SVM Classification, and the Acoustic Indices 
calculations. 
Output = Data populated CSV files for each of the classifications and calculations. 

Standalone Offline Script Module 
This module will be used to run the the classifications and Acoustic Indices calculations on the inputted files 
through a command line interface (CLI). The classifications will include the Neural Network as well as a SVM 
model. The models are pre trained by the team and are ready to classify audio components. This offline script 
will allow users to use this model without a connection to the internet. This offline script will also allow users to 
classify audio files through a high performance computing (HPC) cluster. Our clients are looking to classify 
audio files on Northern Arizona University’s HPC cluster Monsoon. Below is a UML diagram of the Standalone 
Offline Script Module [Figure 10]. 
 



 
Figure 10: UML diagram of the Standalone Offline Script Module 
 
Input = File path to a single or multiple WAV files to be analysed. 
Output = The results of the Neural Network classification, SVM classification and Acoustic Indices calculations 
as individual CSV files. 

Implementation Plan 
Now that we have discussed in detail the modules and interface descriptions, the focus will shift into the 
implementation plan. In this section, we will have a timeline of different implementations that will lead us to the 
final product. Now that we have the minimum viable product, which can upload, submit and output an analysis 
of audio files given by a user, we will be iteratively improving the Neural Network as the semester continues. 
 
Below are the major phases we will have in this semester in order to be successful in creating our product. 

Phase 0: Finish the Minimum Viable Product of each Component 

Currently our application is able to upload WAV files with the Upload Data Module. The files are analyzed with 
a basic Neural Network, an SVM model and Acoustic Indices calculations. The data can be exported as a text 
file, and there is no standalone version of the application currently. Our first phase is to fully implement a 
working minimum viable product. This involves having a Neural Network trained on data that we have 



collected, being able to export results as CSV files, and having a basic running standalone version of the 
application. 

Phase 1: Application Optimization and Further Development 

Our local application has been tested and proved to be working. With this as our base minimum viable product, 
we will create more branches for additional features and improvements, so that we can continuously improve 
our products to meet the final requirements of clients. This will include improvements to the web application 
and the standalone offline script.  

Phase 2: Improving and Retraining Neural Network 

We will be improving our Neural Network by adding more data to the training dataset as well as tweaking the 
Neural Networks parameters. In parallel with the above phase, during this phase, each member of the group 
will be working individually. This work will include labeling and classifying work with the data our clients gave 
us. With the data labeled and exported, this will give us a bigger and better training data set. We can use that 
to train our Neural Network more until Spring break. 

Phase 3: Front-End Improvements 

Currently, our user interface has a certain number of expansion panels, depending on the number of files 
uploaded by the user. In each of them, we will first display the spectrogram of the audio file(s), and then we will 
show the big picture of the combination of a line chart and pie chart showing the result of sound classification 
and the prediction of sound components. Finally, we will have a table showing sound types and proportions. 
We will talk to our clients and iteratively improve the user interface and each component.. 

Phase 4: Implementation 

With these in place, our team will begin to complete our final local application. We will put together the 
application of all the completed modules, and only need to merge together to ensure that it can run on the 
computer's local server. After that, our team will implement our finished local product to the school's 
high-performance computing cluster, which will not consume much time.  

Phase 5: Testing and Bug Fixing 

Once we have implemented Phase 4 and secured the product on NAU’s Monsoon HPC, we will rigorously test 
and debug the program. We will upload audio files in different formats, corrupted audio files, and run other 
tests that may cause the program to crash. Then we will implement the necessary functionality to solve those 
bugs. This way we can ensure that our application runs smoothly and reliably. 

Phase 6: Official Release 

At this point, our project is done, and we will formally deliver the product to our clients. We will meet with the 
clients and introduce the final version of the product step-by-step. We must ensure that the client is able to 
effectively utilize our product. We will be sure to include a user manual with detailed information on how the 
product can be executed properly to our clients. 



Below is a Gantt chart showing when our team plans on completing the implementation of each module, the 
testing, as well as when we will complete the integration between components [Figure 11]. 
 

 
Figure 11: Gantt Chart displaying the team’s schedule 
 
As we can see in the Gantt Chart, we are currently on the right track, and our planned tasks are gradually 
being completed. We have completed a major functional module, that is the Upload Data Module, because it is 
less complicated than other modules. For the Analysis Module, we are running a Neural Network and an SVM 
model to analyze audio. As we are labeling and categorizing more data, we will update our Neural Network and 
SVM model to improve accuracy. The Standalone Module, Export Module and Visualization Module are the 
three modules we are still improving. Among them, the Standalone Module has relatively less to do related to 
the functionality of the web application. There is no need to upload files because the standalone script will only 
need a file path to the audio files. We are doing well in the Export Module, and we can already export a SVM 
classification text file, but we want to output a CSV file with a unified standard output format. The Visualization 
Module is one of the closest modules to be completed. We are displaying a spectrogram, a line chart, a pie 
chart and a table of values of each of the acoustic indices for each uploaded file in a expansion panel. 
Currently the Visualization Module is in a tentative state, as we may change the way that the product will 
display the resulting data. 
 
Right now, the Upload Module is done, and four of us team members are in charge of the remaining four 
modules. Joshua is developing front-end interface, therefore, he is responsible for the visualization module, 



and also some options such as changing the layout according to the needs of the customer. Zhenyu is doing 
the Standalone Module, which provides another version to customers, so that people can no longer analyze 
audio files by uploading files and submitting, but can directly select local file paths to analyze files. Steven and 
Michael are developing our neural network instead of CityNet or SVM we used, so the Export Module and the 
Analysis Module are in their hands. 
 
Besides all of the documents, we will keep our track on Phase 1, 2, and 3, and we plan to complete Phase 4 
before Spring Break, which is to complete the cluster implementation to ensure that our program can run on 
Monsoon after successfully running on a local server. After a few design reviews, some dry runs with mentor, 
finish the poster and presentation, we will enter the final stage of the project, which is a complete report and 
delivery to the user. We are confident in this and we strive to make a useful and reliable application. 

Conclusion 
The impact of human involvement on ecosystems has major consequences. More than one million plant and 
animal sciences are going extinct, with the majority happening within the last few decades (IPBES). There is 
an ever growing need to properly monitor the biodiversity in ecosystems, as well as the factors that impact 
biodiversity. Our clients Colin Quinn and Patrick Burns work with the science-based group 
Soundscapes2Landscapes to provide a more effective and efcient way to monitor biodiversity. They have 
tasked our team with building an automatic way to identify specic, individual sounds present in a soundscape 
recording. 
 
The problem that we are trying to solve is the time-consuming manual identication process of audio 
components in recordings from various sites in Sonoma County, California. Our solution is to develop a 
user-friendly web application that hosts a machine learning model to automatically classify these audio 
components. This will allow volunteers as well as researchers to efciently classify the components of their 
recorded soundscape les. As a stretch goal, we will also be implementing an ofine eldwork application for 
use on a laptop in order for researchers in the eld to also use our application. In order to get one step closer 
in making this solution a reality, we have put together this technological feasibility document. 
 
This document's goal is to outline the specifics of how our team will develop our envisioned solution. Using the 
requirements developed in our Requirements Document, our team has developed a software design that 
accomplishes all the requirements our solution must meet in a user friendly and timely manner. This document 
outlines each specific way all the modules included must be implemented and the ways each module will 
interact with each other. By following this document our team is confident that we can provide our clients with a 
user friendly solution that will solve all aspects of the problem outlined in our introduction. 
 
 
 
 
 
 
 
 



Appendix A 
Needed Libraries for Front-End and Back-End  
 

Python Libraries (back-end) Reason 

numpy Calculates different acoustic indices 

librosa Helps with loading uploaded audio files 

peakutils Detects peaks in uploaded audio files 

SimpleITK Spectrogram image processing 

scipy Identifies components found in an audio file 

os Helps with loading uploaded audio files 

flask Allows back-end python files to connect with front-end 

werkzeug Helps with loading uploaded audio files 

matplotlib Plots spectrogram image from uploaded audio file 

base64 Helps with saving spectrogram image file 

pyAudioAnalysis Support Vector Machine library used for classification 

wave Helps with loading uploaded audio files 

contextlib Helps with loading uploaded audio files 

keras Toolkit for Neural Network classification 

wandb Visualizing Neural Network classification 

sklearn Splits train data into train and test datasets 

tqdm Progress bar for Neural Network console logging 

 

React Libraries (front-end) Reason 

material-ui React framework for user interface 

jquery Allows front-end to connect with the back-end server 

serviceWorker Offers performance advantages to the React application 

Recharts Creates chart components for visualization of data 

 

 


