

Final Software Design Document

Version: ​2.0

Date: ​February 14, 2019

Team Name:​ IntelliChirp

Project Sponsors​: Colin Quinn and Patrick Burns

Team’s Faculty Member​: Fabio Santos

Team Members​: Steven Enriquez, Michael Ewers, Joshua Kruse, Zhenyu Lei

Table of Contents

Table of Contents 2

Introduction 3
Problem 3
Solution 4
Requirements 5

Implementation Overview 5

Architectural Overview 6
Upload Data Module 8
Analysis Module 8
Export Module 9
Visualization Module 9
Standalone Offline Script Module 9

Module and Interface Descriptions 9
Upload Data Module 9
Analysis Module 10
Visualization Module 12
Export Module 12
Standalone Offline Script Module 13

Implementation Plan 14

Conclusion 17

Appendix A 18
Needed Libraries for Front-End and Back-End 18

Introduction
It is becoming ever more important to track and manage the biodiversity that lives on Earth. More and more
animals and plants are becoming extinct everyday which can create a major impact on other parts of the
ecosystem. The group that our team is involved with, Soundscapes2Landscapes, is a science-based project
looking to further advance biodiversity monitoring in order to save the lives of plant and animal species.
Biodiversity is the study that ”refers to the variety of living organisms on Earth, how they relate to each other,
their ecological function, and genetic diversity. All aspects of biodiversity are intimately linked to the functioning
of ecosystems, where species interact with their physical environment. Biodiversity plays a vital role in many
ecosystem functions, such as clean water, clean air, nutrient cycling, food production, and responses to
disturbances, such as res.” [1] It is vitally important to conduct proper biodiversity monitoring, in order to
understand the ever changing environments that humans share with plant and animal species.

Our clients Colin Quinn and Patrick Burns are part of the Global Earth Observation Dynamics of Ecosystems
Lab (GEODE). Colin Quinn is a PhD student and Patrick Burns is a Research Associate at Northern Arizona
University. They work with Soundscapes2Landscapes to help achieve their biodiversity monitoring goals. Our
clients use a specic type of monitoring called passive acoustic monitoring (PAM). This process allows more
spatially extensive and continuous metrics for biodiversity. In Sonoma County, PAM has the ability to provide
land managers and users with a better idea of animal species affected by development and conservation
efforts. Our clients have assigned our team with the task of automatic sound identication from a soundscape,
as currently sound identication is conducted in a manual time consuming way.

Problem
To understand the problems of the current implementation, the workow process will be discussed. First,
soundscape recording data is collected from low cost audio recording devices that are placed in different
landscapes across Sonoma County, California. Once placed, these devices record one minute of every ten
minutes for three to ve days at each site. This has so far resulted in a total of over 500,000 minutes of
gathered audio data. The soundscape recording data then moves onto sound analysis where biodiversity can
be identied along with the specic layers of biophony, geophony, and anthrophony. Once the identication
and analysis are done, satellite imagery from the International Space Station is used to create visual
representations of the surveyed sites. Finally, the satellite data and sound data are put together to create a
species distribution model, which can be used to track locations of bird species and potential environmental
changes in their ecosystems.

The part of the process we are involved with is the soundscape manual analysis. Currently researchers would
manually listen to audio les and draw boxes around various sounds. For a one minute clip, a researcher must
listen to the clip, determine what the sounds are, draw boxes, and label each box with the corresponding audio
component that is occuring. With noisy les, a researcher may spend over a minute going through a single le.
This tool is useful but takes too long for scientists to effectively research the biodiversity in Sonoma County,
California. Because of the frequent recording of audio, the researchers have resulted in terabytes of sound
data for each individual site. Additionally, our clients would like for volunteers, or citizen scientists, to be able to
analyze their own les. For example if a volunteer is working out in the field and records some audio, there is
no current way for this volunteer to analyze their file as most of the features of the current identification tool are
closed to volunteers.

Overall, the problems include:

● The manual identication process is very time consuming. Terabytes of audio is collected from each
site, and requires people to listen to the audio and manually draw boxes around the sound components
being searched for.

● Current interface is not easily accessible to volunteers. Soundscapes2Landscapes wants this tool to be
able to be used by anyone, and the current interface is not very easy to navigate for non-tech
volunteers.

Solution
Our solution to these problems will be an application called the Soundscape Noise Analysis Workbench. This
solution involves a user-friendly user interface that hosts a machine learning model. The goal of this application
will be to allow any user to upload their audio les for analysis.

Overall, our solution will consist of:

● User-friendly web application.
● An ability to automatically classify different audio components in the inputted le using the following

machine learning models:
○ Support Vector Machine
○ Neural Network

● Calculated acoustic indices (data statistics used by sound researchers) for each uploaded sound file.
● Visualizations of the analyzed audio components.
● Table of audio components and acoustic indice values.
● A way to export each models’ classification and the calculated acoustic indice values.
● A standalone version of all the features of the web application for ofine use in the eld.

The solution will ingest audio les. Researchers from Soundscapes2Landscapes will use audio les that they
collect with the low-cost audio devices being used around Sonoma County, California. We will be using a
machine learning algorithm to automatically classify different types of sounds in these recordings. Our machine
learning model plans to accomplish the task of identification in a fraction of the time than current
implementations, classifying an audio le in under a few seconds. The machine learning model requires
training to accurately classify audio components. We must train the model on previously classied audio data.
This previously classied audio data consists of many audio les that have been labelled with each category of
sound that we are looking for. The sound categories will include birds, cars, rain, wind, and others. Collecting
data to train the machine learning model will come from multiple sources, including open source data and data
from Soundscapes2Landscape’s audio recorders. The results of this classication will be visualized in a variety
of ways. The visualizations will include a labeled spectrogram, showing the classied components in the
inputted audio, as well as a pie chart of the proportions of each sound category. These categories include
geophony, biophony, anthrophony, and a no sound present category. Additionally a table of all the information
collected from the analyzed file will be displayed. The solution will also be created as an application for ofine
use in the eld. This application will provide users the ability to classify their audio without an internet
connection.

Requirements
From developing our planned solution to the problem our clients presented us with, we have created specific
requirements that our envisioned solution needs in order to properly create a working final product. Our team
has determined that this project contains key domain level requirements: users will be able to upload audio
les, then analyze the uploaded files, then see the results of the analysis visualized in a timely manner, and
then export all results.

From these key domain level user requirements, key functional requirements for the system were created.
These requirements detail the specific features the product will provide our users when accessing the
envisioned application. The application ingest audio les, then using machine learning will classify the sound
components in the uploaded file, then calculate acoustic indices, then display the results in multiple ways, then
export these results, and finally an offline version of the application for fieldwork is needed. In addition to the
specific functional requirements our product will need to solve our clients goal, specific non-functional
performance requirements were needed for our product to succeed. The performance requirements include:
uploading a one minute file should take less than 5 minutes, and should only take at most three seconds to
complete a full analysis. As well as specific performance requirements our team realized one important
environmental constraint featured in our planned system. Our clients work currently only consists of data from
Sonoma County, California. Since the data only consists of Sonoma County data, it is not easy to guarantee a
high accuracy from our machine learning model when data from other parts of the world is to be used with our
application.

After discussing with our clients the problem they are facing, working to find a envisioned solution to solve their
problem, and creating the key specific requirements; a specific design must be created in order to finalize how
the final product will be built. The purpose of this document is to outline the specific design of how the software
will be built by the team. This document will explain the overall architecture of the final product, how each
module of our solution works and how each module works with each other. Finally, we will explain how our
team plans on implementing each part included in this document.

Implementation Overview

Through our requirements acquisition, our clients helped to reveal the major problems which we are looking to
solve. The main problems which arose through our acquisition consist of the following:

1. The clients currently use manual identification when analyzing their large storage of audio files, which
has proven to be very time consuming.

2. The current program, Arbimon, is not easily accessible to the client’s volunteers.
3. The current analysis does not run efficiently on an HPC.

The solution we have envisioned for our clients is an application which will be named “Soundscape Noise
Analysis Workbench” (S.N.A.W). The S.N.A.W will consist of the following attributes:

Figure 1: Diagram of the Soundscape Noise
Analysis Workbench System Components

● It will be a user-friendly web application and an offline

application.
● It will utilize a machine learning algorithm which can

automatically classify specific audio components which are
being searched for.

● The online web application will return clear visualizations
of the analyzed audio file.

Our solution will require that audio files are input in the WAV
format, as the client’s audio recording devices collect and store
data in WAV format. Once the files are uploaded, the application
will then use a machine learning algorithm to start the identifying
process. The usage of a machine learning algorithm to identify
sounds within an audio file solves problem (1) stated above. We
plan to create a simplistic design for the web application to ensure
that it presents a user friendly experience while maintaining full
functionality while analyzing the audio files, creating a simple
design solves problem (2) stated above. Lastly, the creation of an
offline application will directly solve problem (3) listed above, as it
will be able to use the same functionality as the web application
without the visualizations. The offline application will be more in
tune for analyzing bulk files on an HPC.

The technologies we have chosen for the solution consist of the
following: React, JavaScript, Flask API, and many Python
libraries. Each of the technologies listed will contribute and work
together to create our product. React will be used to create our
web application, and allow us to create a user-friendly front-end.
The Flask API will be used as the “glue” to connect our React
front-end to our machine learning scripts. The Flask API will also
be able to run the React front-end as a server which will receive
API calls and present different pages through URL requests sent
from the front-end. These technologies will be able to produce the

tools we will need to finish the product according to how our clients expect it to be. To view more details on
information for the specific Python and React libraries we have chosen to work with, please refer to the
Technologies Appendix.

Architectural Overview

In the previous section, we discussed the implementation overview that our team has developed to produce
our product. To understand the architecture of our system, we will discuss the high-level detail on how the
Soundscape Noise Analysis Workbench will be built. Below are multiple diagrams of our system components
[Figures 2,3,4].

Figure 2: Diagram Overviewing the S.N.A.W Server Architecture

An outline of our Soundscape Noise Analysis Workbench server architecture is shown in Figure 2. A Flask
server runs the S.N.A.W. module. The server takes in inputs of either a directory of audio files, or a single
audio file. The server connects to the libraries needed by each component of S.N.A.W. The server sends data
and receives data from our analysis module. Finally the server sends an exported file to the user.

Figure 3: Diagram of the S.N.A.W. Architecture’s Modules

An outline of the Soundscape Noise Analysis architecture modules is shown in Figure 3. Taking in the inputted
directory of audio files or a single audio file, the upload data module will handle the data and send the server
locations of each file to the analysis module. The Analysis module uses the uploaded files and runs the Neural
Network, Support Vector Machine, Acoustic Indices, and Spectrogram Modules. These modules return the

Data Structure as described in “Data Structure Description” to the Export Module and Visualization Module.
The Export Module sends an export file to the user.

Figure 4: Diagram of the Standalone Offline S.N.A.W. Architecture

A diagram of the Standalone Offline S.N.A.W architecture is shown in Figure 4. The component modules of the
system work very similarly to the web application with a few differences. Firstly the workbench does not sit in a
server but is instead an standalone executable file. The libraries needed by each component are included in
the file itself instead of being called by the server. Each module found in the analysis module is included in the
offline file itself instead of being called by the server. Additionally the Spectrogram Module and Visualization
Module are not included in the standalone application as the only output to the user is the exported file.

Our product, the Soundscape Noise Analysis Workbench, will be developed in Python and Javascript. Python
will be utilized for the back-end of our system with the microframework Flask. Our front-end will be developed
using React, a Javascript library. Our offline version of our application will run as a single python script. Below
we will overview the key responsibilities and features of each component of our system, which include:

Upload Data Module
The Upload Data Module will be utilized to ingest audio files that will be analysed. The application ingests files
in WAV format and stores them for further analysis. The user will be able to choose to analyze a single file or
multiple files. This will be done by dragging and dropping the file(s) onto the web application, or by choosing
the files from a file chooser.

Analysis Module
The Analysis Module is used to take the ingested audio files and run multiple types of classifications on them.
This includes running the audio files through a Neural Network to identify sound components, using a SVM to
identify sound components, and run Acoustic Indices calculations.

Export Module
The Export Module will allow a user to export the analyzed results. The user will then be able to keep a log of
the results on their local machine. The results will be in the CSV files. There will be a CSV file for the Neural
Network classification, a CSV for the SVM classification, and a CSV for the Acoustic Indices calculations.

Visualization Module
The Visualization Module is used to visualize the results in a user-friendly manner. The user will be able to get
an intuitive visual of what sound components were present in the file, where they were found, as well as how
big of a proportion of the audio file was identifiable sound components.

Standalone Offline Script Module
The Standalone Offline Script Module is used to have a standalone version of the Soundscape Noise Analysis
Workbench. This will be in the form of a script that can be run through a terminal. Using a standalone version
of the application will be useful for anyone looking to analyze audio without a connection to the internet. The
user will need to provide a path to the a directory of audio files to be analyzed.

These modules make up all of the functionality that SNAW will provide. Now we will look into the
communication mechanisms and information flows of our architecture. The web application connects the
Upload Data Module, the Analysis Module, the Export Module, and the Visualization Module. The Upload
Module will ingest the audio files and store them in a location that the Analysis Module will pull from. The
Export Module will input the data from the Analysis Module and allow for the results to be downloaded. The
Visualization Module also uses the Analysis Module’s output to create user-friendly visualizations for the
end-user. The Standalone Offline Script Module is separated from all of the other modules. The control flow will
be in a script that runs each classification offline.

With the communication mechanisms and information flows discussed, we will discuss the influences from our
architectural style embodied by our architecture. For our React App, we have modularized the application into
many components. This allows for updating the code base in the future and debugging the application much
easier.

Module and Interface Descriptions
In the previous section, we discussed the high-level details on how the Soundscape Noise Analysis
Workbench will be built. To understand the lower-level details of our system’s architecture, we will go into detail
for each individual module.

Upload Data Module
This module is used to ingest WAV files into the system. Files will be selected from a file chooser or can be
dragged and dropped onto the web application. An error will be shown if the user attempts to upload a file that
is not accepted by the web application. The ingested files will be uploaded to a server to then be utilized by the
Analysis Module. The Upload Data Module sits at the very beginning of our products architecture, as files are
needed to move forward with the execution of the product. Below is a UML diagram of the Upload Data Module
[Figure 5].

Figure 5: UML diagram of the Upload Data Module

Input = A WAV file or multiple WAV files (unless we choose to accept other popular file formats).
Output = An array of files uploaded to the server with a confirmation message to the end-user.

Analysis Module
This module will be used to run Neural Network classifications and Acoustic index classifications on the
uploaded audio file(s). Once the Upload Module has completed, the user will be able to press the “Analyze
Audio” button which will run 3 seperate classes and their methods to analyze the audio. The SVMClassification
and NeuralNetworkClassification classes will run our machine learning models on the uploaded audio file/s and
return a JSON dictionary populated with the results from each of the classes. The AcousticIndices class will
run many different methods to calculate the specific acoustic indices within the file, and then return a JSON
dictionary populated with the result data. Upon completion of all three classes running successfully, the
Analysis Module will then send a populated JSON dictionary to the Visualization Module to be processed and
displayed on the front-end of the product. The results from the Analysis Module will also be sent forward to the
Export Module. The Analysis Module is an important part for the overall product, as this is where the main
portion of calculations on files is done for the product. Once completed, the product is then accessible through
the Visualization and Export Modules. Below is a UML diagram of the Analysis Module [Figure 6].

Figure 6: UML diagram of the Analysis Module

Input = Audio File(s).
Output = JSON Dictionaries from each classification containing the results.

The Analysis Module’s output references a data structure known as a JSON Dictionary, which will be one of
our main data structures organizing our resulting data. JSON dictionaries utilize Key-Value pairs, in which a
unique “Key” (string, integer, etc) is stored and will be attached to specific data or “Value” that we choose. We
pass a single JSON object to the front end. This overall object contains a JSON object for each uploaded file.
Associated with each uploaded file is a JSON object with the results of each of the four different back-end
analysis functions. The UML Diagram below showcases the design that we have decided on for our JSON
dictionary [Figure 7].

Figure 7: Diagram of the JSON Structure

Visualization Module
This module is used to visualize the data needed by users in a user-friendly way. It accepts the results
generated by classification Python programs and acoustic indices Python programs from the back end. The
Visualization Module will generate a certain number of extension panels imported from material UI, depending
on the number of files uploaded by users. We have ReceiveAndCalculate sub-module, which receives the
dictionary that is passed by the Analysis Module running neural network and acoustic indices calculation. The
dictionary contains three categories: anthrophony, biophony and geophony. The visualization module also
have another GenerateGraph sub-module, which will calculate the number of these three categories
respectively, and then generate the line chart and pie chart through the line chart and pie chart files imported
from recharts. They all include the charts imported from the rechart package. This sub-module also takes the
spectrogram from the results folder and displays it in cardmedia. A line chart is displayed as a scalable vector
graph, and a pie chart is also a scalable vector graph. All the data in the table are from our calculation of
classification dictionary and acoustic index dictionary. Here is the UML diagram of the visualization module
[Figure 8].

Figure 8: UML diagram of the Visualization Module

Input = Dictionary.
Output = Spectrogram, Charts, Table of values of each of the acoustic index percentage.

Export Module
This module is used to export a CSV file that has been populated with result data from the backend. The
Export Module will receive a JSON dictionary which is passed through by the Analysis Module which runs the
Neural Network and Acoustic Index calculations. The Export Module will be run by the ExportResults class,
which contains methods for the Neural Network Classification, SVM Classification, and Acoustic Indices
calculations. Using the data received from the JSON dictionary, the selected CSV of the three options

mentioned will be formatted properly. The NN_Results.csv will contain data regarding the specific sound
events that were identified within the audio file, along with the respective timestamps at which the sound
events occured. The SVM_Results.csv will contain similar data to the NN_Results.csv, except that the data will
be obtained from running an SVM model instead of a Neural Network model. Lastly, the
Acoustic_Indices_results.csv will contain data on the acoustic indices of the specific file analyzed, and will
include each of the sub-categories in the acoustic indices and their respective values calculated. The Export
Module is found at the end of our products architecture as its main objective is to allow the user to retrieve the
results of the product after the Analysis Module has been completed. Below is a UML diagram of the Export
Module [Figure 9].

Figure 9: UML diagram of the Export Module

Input = JSON Dictionaries from the Neural Network Classification, SVM Classification, and the Acoustic Indices
calculations.
Output = Data populated CSV files for each of the classifications and calculations.

Standalone Offline Script Module
This module will be used to run the the classifications and Acoustic Indices calculations on the inputted files
through a command line interface (CLI). The classifications will include the Neural Network as well as a SVM
model. The models are pre trained by the team and are ready to classify audio components. This offline script
will allow users to use this model without a connection to the internet. This offline script will also allow users to
classify audio files through a high performance computing (HPC) cluster. Our clients are looking to classify
audio files on Northern Arizona University’s HPC cluster Monsoon. Below is a UML diagram of the Standalone
Offline Script Module [Figure 10].

Figure 10: UML diagram of the Standalone Offline Script Module

Input = File path to a single or multiple WAV files to be analysed.
Output = The results of the Neural Network classification, SVM classification and Acoustic Indices calculations
as individual CSV files.

Implementation Plan
Now that we have discussed in detail the modules and interface descriptions, the focus will shift into the
implementation plan. In this section, we will have a timeline of different implementations that will lead us to the
final product. Now that we have the minimum viable product, which can upload, submit and output an analysis
of audio files given by a user, we will be iteratively improving the Neural Network as the semester continues.

Below are the major phases we will have in this semester in order to be successful in creating our product.

Phase 0: Finish the Minimum Viable Product of each Component

Currently our application is able to upload WAV files with the Upload Data Module. The files are analyzed with
a basic Neural Network, an SVM model and Acoustic Indices calculations. The data can be exported as a text
file, and there is no standalone version of the application currently. Our first phase is to fully implement a
working minimum viable product. This involves having a Neural Network trained on data that we have

collected, being able to export results as CSV files, and having a basic running standalone version of the
application.

Phase 1: Application Optimization and Further Development

Our local application has been tested and proved to be working. With this as our base minimum viable product,
we will create more branches for additional features and improvements, so that we can continuously improve
our products to meet the final requirements of clients. This will include improvements to the web application
and the standalone offline script.

Phase 2: Improving and Retraining Neural Network

We will be improving our Neural Network by adding more data to the training dataset as well as tweaking the
Neural Networks parameters. In parallel with the above phase, during this phase, each member of the group
will be working individually. This work will include labeling and classifying work with the data our clients gave
us. With the data labeled and exported, this will give us a bigger and better training data set. We can use that
to train our Neural Network more until Spring break.

Phase 3: Front-End Improvements

Currently, our user interface has a certain number of expansion panels, depending on the number of files
uploaded by the user. In each of them, we will first display the spectrogram of the audio file(s), and then we will
show the big picture of the combination of a line chart and pie chart showing the result of sound classification
and the prediction of sound components. Finally, we will have a table showing sound types and proportions.
We will talk to our clients and iteratively improve the user interface and each component..

Phase 4: Implementation

With these in place, our team will begin to complete our final local application. We will put together the
application of all the completed modules, and only need to merge together to ensure that it can run on the
computer's local server. After that, our team will implement our finished local product to the school's
high-performance computing cluster, which will not consume much time.

Phase 5: Testing and Bug Fixing

Once we have implemented Phase 4 and secured the product on NAU’s Monsoon HPC, we will rigorously test
and debug the program. We will upload audio files in different formats, corrupted audio files, and run other
tests that may cause the program to crash. Then we will implement the necessary functionality to solve those
bugs. This way we can ensure that our application runs smoothly and reliably.

Phase 6: Official Release

At this point, our project is done, and we will formally deliver the product to our clients. We will meet with the
clients and introduce the final version of the product step-by-step. We must ensure that the client is able to
effectively utilize our product. We will be sure to include a user manual with detailed information on how the
product can be executed properly to our clients.

Below is a Gantt chart showing when our team plans on completing the implementation of each module, the
testing, as well as when we will complete the integration between components [Figure 11].

Figure 11: Gantt Chart displaying the team’s schedule

As we can see in the Gantt Chart, we are currently on the right track, and our planned tasks are gradually
being completed. We have completed a major functional module, that is the Upload Data Module, because it is
less complicated than other modules. For the Analysis Module, we are running a Neural Network and an SVM
model to analyze audio. As we are labeling and categorizing more data, we will update our Neural Network and
SVM model to improve accuracy. The Standalone Module, Export Module and Visualization Module are the
three modules we are still improving. Among them, the Standalone Module has relatively less to do related to
the functionality of the web application. There is no need to upload files because the standalone script will only
need a file path to the audio files. We are doing well in the Export Module, and we can already export a SVM
classification text file, but we want to output a CSV file with a unified standard output format. The Visualization
Module is one of the closest modules to be completed. We are displaying a spectrogram, a line chart, a pie
chart and a table of values of each of the acoustic indices for each uploaded file in a expansion panel.
Currently the Visualization Module is in a tentative state, as we may change the way that the product will
display the resulting data.

Right now, the Upload Module is done, and four of us team members are in charge of the remaining four
modules. Joshua is developing front-end interface, therefore, he is responsible for the visualization module,

and also some options such as changing the layout according to the needs of the customer. Zhenyu is doing
the Standalone Module, which provides another version to customers, so that people can no longer analyze
audio files by uploading files and submitting, but can directly select local file paths to analyze files. Steven and
Michael are developing our neural network instead of CityNet or SVM we used, so the Export Module and the
Analysis Module are in their hands.

Besides all of the documents, we will keep our track on Phase 1, 2, and 3, and we plan to complete Phase 4
before Spring Break, which is to complete the cluster implementation to ensure that our program can run on
Monsoon after successfully running on a local server. After a few design reviews, some dry runs with mentor,
finish the poster and presentation, we will enter the final stage of the project, which is a complete report and
delivery to the user. We are confident in this and we strive to make a useful and reliable application.

Conclusion
The impact of human involvement on ecosystems has major consequences. More than one million plant and
animal sciences are going extinct, with the majority happening within the last few decades (IPBES). There is
an ever growing need to properly monitor the biodiversity in ecosystems, as well as the factors that impact
biodiversity. Our clients Colin Quinn and Patrick Burns work with the science-based group
Soundscapes2Landscapes to provide a more effective and efcient way to monitor biodiversity. They have
tasked our team with building an automatic way to identify specic, individual sounds present in a soundscape
recording.

The problem that we are trying to solve is the time-consuming manual identication process of audio
components in recordings from various sites in Sonoma County, California. Our solution is to develop a
user-friendly web application that hosts a machine learning model to automatically classify these audio
components. This will allow volunteers as well as researchers to efciently classify the components of their
recorded soundscape les. As a stretch goal, we will also be implementing an ofine eldwork application for
use on a laptop in order for researchers in the eld to also use our application. In order to get one step closer
in making this solution a reality, we have put together this technological feasibility document.

This document's goal is to outline the specifics of how our team will develop our envisioned solution. Using the
requirements developed in our Requirements Document, our team has developed a software design that
accomplishes all the requirements our solution must meet in a user friendly and timely manner. This document
outlines each specific way all the modules included must be implemented and the ways each module will
interact with each other. By following this document our team is confident that we can provide our clients with a
user friendly solution that will solve all aspects of the problem outlined in our introduction.

Appendix A
Needed Libraries for Front-End and Back-End

Python Libraries (back-end) Reason

numpy Calculates different acoustic indices

librosa Helps with loading uploaded audio files

peakutils Detects peaks in uploaded audio files

SimpleITK Spectrogram image processing

scipy Identifies components found in an audio file

os Helps with loading uploaded audio files

flask Allows back-end python files to connect with front-end

werkzeug Helps with loading uploaded audio files

matplotlib Plots spectrogram image from uploaded audio file

base64 Helps with saving spectrogram image file

pyAudioAnalysis Support Vector Machine library used for classification

wave Helps with loading uploaded audio files

contextlib Helps with loading uploaded audio files

keras Toolkit for Neural Network classification

wandb Visualizing Neural Network classification

sklearn Splits train data into train and test datasets

tqdm Progress bar for Neural Network console logging

React Libraries (front-end) Reason

material-ui React framework for user interface

jquery Allows front-end to connect with the back-end server

serviceWorker Offers performance advantages to the React application

Recharts Creates chart components for visualization of data

